References

  1. A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network,” Physica D: Nonlinear Phenomena, vol. 404, p. 132306, Mar. 2020, doi:https://doi.org/10.1016/j.physd.2019.132306.

  2. P. Chaajer, M. Shah, and A. Kshirsagar, “The applications of artificial neural networks, support vector machines, and long-short term memory for stock market prediction,” Decision Analytics Journal, p. 100015, Nov. 2021, doi: https://doi.org/10.1016/j.dajour.2021.100015.

  3. M. Kumbure, C. Lohrmann, P. Luukka, and J. Porras, “Machine learning techniques and data for stock market forecasting: A literature review,” Expert Systems with Applications, vol. 197, p. 116659, Jul. 2022, doi: https://doi.org/10.1016/j.eswa.2022.116659

  4. Qiao, R., Chen, W., & Qiao, Y. (2022). “Prediction of stock return by LSTM neural network,” Applied Artificial Intelligence, 36(1). doi: https://doi.org/10.1080/08839514.2022.2151159.

  5. Fjellström, C. (2022, January 20). “Long short-term memory neural network for Financial Time Series,” arXiv.org. doi: https://doi.org/10.48550/arXiv.2201.08218.

  6. Mehlig, B. (2021, October 27). “Machine learning with neural networks,” arXiv.org. doi: https://doi.org/10.48550/arXiv.1901.05639.

  7. Staudemeyer, R., Morris, E. (2019, September 23). “Understanding LSTM – a tutorial into Long Short-Term Memory Recurrent Neural Networks,” ArXiv.org. doi: https://doi.org/10.48550/arXiv.1909.09586

  8. Sharma, S., Athaiya, A. (2020, April). “ACTIVATION FUNCTIONS IN NEURAL NETWORKS,” International Journal of Engineering Applied Sciences and Technology. 04. 310-316. 10.33564/IJEAST.2020.v04i12.054.

  9. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2

  10. McKinney, W., & others. (2010). Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference (Vol. 445, pp. 51–56).

  11. Abadi, Mart’in, Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., … others. (2016). Tensorflow: A system for large-scale machine learning. In 12th $USENIX$ Symposium on Operating Systems Design and Implementation ($OSDI$ 16) (pp. 265–283).

  12. Pedregosa, F., Varoquaux, Ga”el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., … others. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.

  13. Chollet, F., & others. (2015). Keras. GitHub. Retrieved from https://github.com/fchollet/keras.

  14. Bluesky Capital and A. Leccese, "Machine Learning in Finance: Why You Should Not Use LSTM's to Predict the Stock Market," Bluesky Capital, Jan. 13, 2019. https://www.blueskycapitalmanagement.com/machine-learning-in-finance-why-you-should-not-use-lstms-to-predict-the-stock-market/